80 research outputs found

    Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    Get PDF
    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the contact stress distribution and the contact region are not known a priori, they did not directly impose the boundary conditions appropriate for modelling the contact and on-contact regions between the fastener and the hole. Furthermore, finite element analysis is not suitable for iterative design calculations for optimizing laminate construction in the presence of fasteners under complex loading conditions. In this study, the solution method developed by Madenci and Ileri (1992a,b) has been extended to determine the contact stresses in mechanical joints under combined bearing-bypass and shear loading, and bearing-bypass loading in compression resulting in dual contact regions

    Residual strength of thin panels with cracks

    Get PDF
    The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions

    Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening

    Get PDF
    This study presents the ordinary state-based peridynamic constitutive relations for plastic deformation based on von Mises yield criteria with isotropic hardening. The peridynamic force density-stretch relations concerning elastic deformation are augmented with increments of force density and stretch for plastic deformation. The expressions for the yield function and the rule of incremental plastic stretch are derived in terms of the horizon, force density, shear modulus, and hardening parameter of the material. The yield surface is constructed based on the relationship between the effective stress and equivalent plastic stretch. The validity of peridynamic predictions is established by considering benchmark solutions concerning a plate under tension, a plate with a hole and a crack also under tension

    Peridynamics for anti-plane shear and torsional deformations

    Get PDF
    A rod or beam is one of the most widely used members in engineering construction. Such members must be properly designed to resist the applied loads. When subjected to antiplane (longitudinal) shear and torsional loading, homogeneous, isotropic, and elastic materials are governed by the Laplace equation in two dimensions under the assumptions of classical continuum mechanics, and are considerably easier to solve than their three-dimensional counterparts. However, when using the finite element method in conjunction with linear elastic fracture mechanics, crack nucleation and its growth still pose computational challenges, even under such simple loading conditions. This difficulty is mainly due to the mathematical structure of its governing equations, which are based on the local classical continuum theory. However, the nonlocal peridynamic theory is free of these challenges because its governing equations do not contain any spatial derivatives of the displacement components, and thus are valid everywhere in the material. This study presents the peridynamic equation of motion for antiplane shear and torsional deformations, as well as the peridynamic material parameters. After establishing the validity of this equation, solutions for specific components that are weakened by deep edge cracks and internal cracks are presented

    Peridynamics for stress and strain fields

    Get PDF
    The nonlocal peridynamic theory has been proven extremely robust for predicting damage initiation and its propagation in materials under complex conditions. Its equations of motion do not contain any spatial derivatives of the displacement components, and thus, valid everywhere in the material. The original peridynamic equations of motion were derived in terms of the stretch between the material points, and did not address the determination of strain and stress components. This study presents a new form of the peridynamic equations of motion in terms of the classical strain components. Thus, its solution leads to the determination of the strain and stress components directly. This study also provides the exact form of the deformation gradient tensor that enables the use of the existing constitutive models in the peridynamic theory

    Peridynamic thermal diffusion

    Get PDF
    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution

    Fully coupled peridynamic thermomechanics

    Get PDF
    This study concerns the derivation of the coupled peridynamic (PD) thermomechanics equations based on thermodynamic considerations. The generalized peridynamic model for fully coupled thermomechanics is derived using the conservation of energy and the free-energy function. Subsequently, the bond-based coupled PD thermomechanics equations are obtained by reducing the generalized formulation. These equations are also cast into their nondimensional forms. After describing the numerical solution scheme, solutions to certain coupled thermomechanical problems with known previous solutions are presented

    Implementation of Free-Formulation-Based Flat Shell Elements into NASA Comet Code and Development of Nonlinear Shallow Shell Element

    Get PDF
    This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory

    Peridynamic modeling of diffusion by using finite element analysis

    Get PDF
    Diffusion modeling is essential in understanding many physical phenomena such as heat transfer, moisture concentration, electrical conductivity, etc. In the presence of material and geometric discontinuities, and non-local effects, a non-local continuum approach, named as peridynamics, can be advantageous over the traditional local approaches. Peridynamics is based on integro-differential equations without including any spatial derivatives. In general, these equations are solved numerically by employing meshless discretization techniques. Although fundamentally different, commercial finite element software can be a suitable platform for peridynamic simulations which may result in several computational benefits. Hence, this study presents the peridynamic diffusion modeling and implementation procedure in a widely used commercial finite element analysis software, ANSYS. The accuracy and capability of this approach is demonstrated by considering several benchmark problems
    corecore